Skip to main content

IoT Hackathon Part III : Some enhancements to the sensor example

In my previous post I showed you how to setup a simple weather-station using Raspberry Pi, GroovyPi sensors and Python. It worked very well, but there is definitely room for improvement. In this short post I describe some of these improvements. First you will learn how to start the weather-station when you reboot the Pi. Next I will show you how to create some decent log info.

Autostart
The weather-station works like a charm, but if the Raspi is rebooted, you need to manually restart the python script. That is not the way I want this to work, I want the weather-station start on reboot. Actually this is very simple. The Raspberry Pi uses Linux as OS and thus we can use the crontab to schedule when to start tasks. With the @reboot directive, a task starts on reboot. The only thin we need to do is to add a line to the crontab that tells that we want to start our weather-station on each and every reboot. You can open te crontab for editing by issuing the following command:
 $ sudo crontab -e  
Next you simply add the following line of code to the crontab and you are good to go.
 @reboot python /home/pi/Desktop/Lucs_projects/weatherstation/weatherstation.py &  
The “&” at the end of the line means the command is run in the background and it won’t stop the system booting up. It is as simple as that.

Logging
In my initial setup I used a print statement to send the reading to the console.
 print "temp =", temp, "C\thumadity =", hum,"%"  
However, when the weather-station is started on reboot, instead of from the command prompt, there is no console and there is now way that we can see the data. For that reason I decided to add some logging to the Python script. For this we can use the logging library. This enables you to create a logger, create a loghandler to write info to file and console, and also to add some formatting to your logstatements. All of this is explained in the Python Documentation. So first import the logging library, next create a logger and some loghandlers, optionally add some formatting and your logging is ready to use.
 import logging  
 import datetime
  
 # lets create a logger 
 logger = logging.getLogger('weather.logger')  
 logger.setLevel('DEBUG')

 # create a log handler to log to file   
 file_log_handler = logging.FileHandler('/home/pi/Desktop/Lucs_projects/weatherstation/weather.log')  
 logger.addHandler(file_log_handler)  

 # create a log handler to log to the console
 stderr_log_handler = logging.StreamHandler()  
 logger.addHandler(stderr_log_handler)  

 #now add some formatting (note the import of datetime is required)
 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')  
 file_log_handler.setFormatter(formatter)  
 stderr_log_handler.setFormatter(formatter)  

 #Now we can write use the logger  
 logger.info("temp ="+ t + "C\thumidity ="+ h + "%")   
When the weather-station is started on reboot, the log statements can be found in 'weather.log'. When you start from command-line, log statements are visible in both, the console and the 'weather.log' file.

Resources
1) Start at reboot
2) Python Logging

Comments

Popular posts from this blog

ADF 12.1.3 : Implementing Default Table Filter Values

In one of my projects I ran into a requirement where the end user needs to be presented with default values in the table filters. This sounds like it is a common requirement, which is easy to implement. However it proved to be not so common, as it is not in the documentation nor are there any Blogpost to be found that talk about this feature. In this blogpost I describe how to implement this.

The Use Case Explained
Users of the application would typically enter today's date in a table filter in order to get all data that is valid for today. They do this each and every time. In order to facilitate them I want to have the table filter pre-filled with today's date (at the moment of writing July 31st 2015).


So whenever the page is displayed, it should display 'today' in the table filter and execute the query accordingly. The problem is to get the value in the filter without the user typing it. Lets first take a look at how the ADF Search and Filters are implemented by the f…

ADF 11g Quicky 3 : Adding Error, Info and Warning messages

How can we add a message programatically ? Last week I got this question for the second time in a months time. I decided to write a short blogpost on how this works.

Adding messages is very easy, you just need to know how it works.
You can add a message to your faces context by creating a new FacesMessage. Set the severity (ERROR, WARNING, INFO or FATAL ), set the message text, and if nessecary a message detail. The fragment below shows the code for an ERROR message.

1: public void setMessagesErr(ActionEvent actionEvent) {
2: String msg = "This is a message";
3: AdfFacesContext adfFacesContext = null;
4: adfFacesContext = AdfFacesContext.getCurrentInstance();
5: FacesContext ctx = FacesContext.getCurrentInstance();
6: FacesMessage fm =
7: new FacesMessage(FacesMessage.SEVERITY_ERROR, msg, "");
8: ctx.addMessage(null, fm);
9: }


I created a simple page with a couple of buttons to show the result of setting the message. When the butto…

How to: Adding Speech to Oracle Digital Assistant; Talk to me Goose

At Oracle Code One in October, and also on DOAG in Nurnberg Germany in November I presented on how to go beyond your regular chatbot. This presentation contained a part on exposing your Oracle Digital Assistant over Alexa and also a part on face recognition. I finally found the time to blog about it. In this blogpost I will share details of the Alexa implementation in this solution.
Typically there are 3 area's of interest which I will explain. Webhook Code to enable communication between Alexa and Oracle Digital AssistantAlexaDigital Assistant (DA) Explaining the Webhook Code The overall setup contains of Alexa, a NodeJS webhook and an Oracle Digital Assistant.
The webhook code will be responsible for receiving and transforming the JSON payload from the Alexa request. The transformed will be sent to a webhook configured on Oracle DA. The DA will send its response back to the webhook, which will transform into a format that can be used by an Alexa device. To code exposes two REST …